# Contribution of non-tidal oceanic mass variations to Earth rotation determined from space geodesy and ocean data

## Franziska Göttl, Wolfgang Bosch, Michael Schmidt, Florian Seitz

Deutsches Geodätisches Forschungsinstitut



IUGG 2007: Earth rotation and geodynamics, Perugia, 6th July 2007

# **Motivation**

- The motion of the rotation axis with respect to the Earth's surface can be observed precisely from space geodetic techniques
- Underlying geophysical processes within and between the subsystems of the Earth that perturb the Earth rotation have to be separated for a better understanding of our planet
- Global mass displacements and movements can be estimated from terrestrial and space observations and from assimilated models

Can satellite altimetry estimate oceanic mass variations better than ocean models?



## $\bigcirc$

# **Calculation method**



# Data sources (1)

#### Altimetry

#### Sea level anomalies (SLA) from TOPEX/Poseidon extended mission

- Altimeter data: MGDR, Version C
- Consideration of environmental and geophysical corrections, including inverse barometer correction
- Mean sea surface of 2003 2005
- Monthly mean (time series)
- Roman Savcenko, Wolfgang Bosch (DGFI)

#### Ocean data

# Temperature and salinity climatologies of the WOA05

- 24 depth level (0 1500m)
- long-period monthly mean (averages)
- http://www.nodc.nova.gov/OC5/WOA05

# Temperature and salinity fields from Masayoshi Ishii

- 16 depth level (0 700m)
- monthly mean (time series)
- Masayoshi Ishii (Frontier Research Center for Global Change)



# Data sources (2)



# Data sources (3)

#### **Ocean model**

#### Oceanic excitation functions from baroclinic ocean model OMCT

- Forcing with ECMWF
  - wind stress
  - 2m-temp.
  - freshwater fluxes
- IB adoption
- Assimilation: no
- Mass conservation
- Monthly mean (time series)
  - Maik Thomas (GFZ-Potsdam)

#### Oceanic excitation functions from baroclinic ocean model ECCO (kf049f)

- Forcing with NCEP reanalysis
  - wind stress
  - heat flux
  - freshwater fluxes
- IB adoption
- Assimilation: altimetry & XBT
- Mass conservation
- Monthly mean (time series)
- http://euler.jpl.nasa.gov/sbo/ sbo\_data.html



# **Oceanic excitations**



# **Oceanic excitations**

#### - compare



# **Atmospheric excitations**





LL

# "Earth rotation and global dynamic processes" FOR584

# Land ocean distribution





# **Hydrological excitations**

















DGFI





DGF

# **Conclusions and Outlook**

Adding hydrological excitations from LDAS do mostly raise the agreement with geodetic excitations.

Assimilated-model-only polar motion excitations seem to be better than combined polar motion excitations.

- Assimilated-model-only solutions are consistent
  - Errors of atmospheric model are compensated by ocean model
- Combined solutions may be inconsistent
  - Classical IB adoption
  - Uncertainties of steric effect
  - Uncertainties of atmosphere model
  - Uncertainties of oceanic mass movements from ocean model



# **Conclusions and Outlook**

Adding hydrological excitations from LDAS do mostly raise the agreement with geodetic excitations.

Assimilated-model-only polar motion excitations seem to be better than combined polar motion excitations.

- Assimilated-model-only solutions are consistent
  - Errors of atmospheric model are compensated by ocean model
- Combined solutions may be inconsistent
  - Classical IB adoption (dynamic atmosphere correction)
  - Uncertainties of steric effect (new satellite mission SMOS)
  - Uncertainties of atmosphere model
  - Uncertainties of oceanic mass movements from ocean model



# Thank you for your attention!





Ŭ