Contribution of non-tidal oceanic mass variations to Earth rotation determined from space geodesy and ocean data

Franziska Göttl, Wolfgang Bosch, Michael Schmidt, Florian Seitz

Deutsches Geodätisches Forschungsinstitut

IUGG 2007: Earth rotation and geodynamics, Perugia, 6th July 2007
Motivation

- The motion of the rotation axis with respect to the Earth’s surface can be observed precisely from space geodetic techniques.
- Underlying geophysical processes within and between the subsystems of the Earth that perturb the Earth rotation have to be separated for a better understanding of our planet.
- Global mass displacements and movements can be estimated from terrestrial and space observations and from assimilated models.

Can satellite altimetry estimate oceanic mass variations better than ocean models?
Calculation method

Altimetry
- sea level anomalies

Ocean data
- temperature and salinity variations
 - steric effect

Ocean model
- steric effect
 - sea level anomalies

Oceanic mass variations expressed in equivalent water heights

Global spherical harmonic analysis

Dimensionless normalized Stokes coefficients of degree two

\[\chi_1 = -\frac{1}{1 + k_2^2} \cdot \frac{1}{\sqrt{\frac{3}{5}}} \cdot \frac{1.098 R^2 M_E}{C - A} \cdot \Delta C_{21} \]
\[\chi_2 = -\frac{1}{1 + k_2^2} \cdot \frac{1}{\sqrt{\frac{3}{5}}} \cdot \frac{1.098 R^2 M_E}{C - A} \cdot \Delta S_{21} \]

Oceanic polar motion excitation functions
Data sources (1)

Altimetry

- Sea level anomalies (SLA) from TOPEX/Poseidon extended mission
 - Altimeter data: MGDR, Version C
 - Consideration of environmental and geophysical corrections, including inverse barometer correction
 - Mean sea surface of 2003 - 2005
 - Monthly mean (time series)
 - Roman Savcenko, Wolfgang Bosch (DGFI)

Ocean data

- Temperature and salinity climatologies of the WOA05
 - 24 depth level (0 - 1500m)
 - long-period monthly mean (averages)
 - http://www.nodc.nova.gov/OC5/WOA05

- Temperature and salinity fields from Masayoshi Ishii
 - 16 depth level (0 - 700m)
 - monthly mean (time series)
 - Masayoshi Ishii (Frontier Research Center for Global Change)
Data sources (2)

RMS of monthly mean SLA (TOPEX/Poseidon) [2003 - 2005]

RMS of monthly mean steric effect (M. Ishii) [2003 - 2005]

RMS of monthly mean residuals (SLA – steric effect) [2003 - 2005]

[cm]
Data sources (3)

Ocean model

Oceanic excitation functions from baroclinic ocean model OMCT
- Forcing with ECMWF
 - wind stress
 - 2m-temp.
 - freshwater fluxes
- IB adoption
- Assimilation: no
- Mass conservation
- Monthly mean (time series)
- Maik Thomas (GFZ-Potsdam)

Oceanic excitation functions from baroclinic ocean model ECCO (kf049f)
- Forcing with NCEP reanalysis
 - wind stress
 - heat flux
 - freshwater fluxes
- IB adoption
- Assimilation: altimetry & XBT
- Mass conservation
- Monthly mean (time series)
Oceanic excitations

- Derived from sea level anomalies which are reduced by the steric effect from Ishii (1B)
- Derived from sea level anomalies which are reduced by the steric effect from WOA05 (1B)
- Derived from sea level anomalies which are reduced by the steric effect from OMCT (1B)
Oceanic excitations - compare

correlation: 0.52 – 0.87
rms [mas]: 5.4 – 11.0

correlation: 0.47 – 0.90
rms [mas]: 4.7 – 10.5
Atmospheric excitations

Correlation: 0.81 rms [mas]: 5.4
Correlation: 0.99 rms [mas]: 9.2
Land ocean distribution
Hydrological excitations

correlation: 0.57 rms [mas]: 4.2

correlation: -0.22 rms [mas]: 10.9
Agreement w. geodetic excitations (C04)

- Correlation with C04
- RMS wrt C04 [mas]
Agreement w. geodetic excitations (C04)

- Correlation with C04
- RMS wrt C04 [mas]

- ECMWF, OMCT, Ishii, WOA05, ECCO

- atmo + ocean
- atmo + ocean + LDAS
- atmo + ocean + LAD
Agreement w. geodetic excitations (C04)

χ² wrt C04 [mas]

Correlation with C04

rms wrt C04

2003 2004 2005

χ²

ECMWF ECMWF ECMWF ECMWF NCEP ECMWF ECMWF ECMWF NCEP
OMCT OMCT* Ishii WOA05 ECCO OMCT OMCT* Ishii WOA05 ECCO

atmo+ocean
Agreement w. geodetic excitations (C04)

χ² wrt C04 [mas]

ECMWF ECMWF ECMWF ECMWF NCEP ECMWF ECMWF ECMWF NCEP
OMCT OMCT* Ishii WOA05 ECCO OMCT OMCT* Ishii WOA05 ECCO

correlation with C04

χ²

atmo+ocean atmo+ocean+LDAS atmo+ocean+LAD
Conclusions and Outlook

Adding hydrological excitations from LDAS do mostly raise the agreement with geodetic excitations.

Assimilated-model-only polar motion excitations seem to be better than combined polar motion excitations.

- Assimilated-model-only solutions are consistent
 - Errors of atmospheric model are compensated by ocean model

- Combined solutions may be inconsistent
 - Classical IB adoption
 - Uncertainties of steric effect
 - Uncertainties of atmosphere model
 - Uncertainties of oceanic mass movements from ocean model
Conclusions and Outlook

Adding hydrological excitations from LDAS do mostly raise the agreement with geodetic excitations.

Assimilated-model-only polar motion excitations seem to be better than combined polar motion excitations.

- Assimilated-model-only solutions are consistent
 - Errors of atmospheric model are compensated by ocean model

- Combined solutions may be inconsistent
 - Classical IB adoption (dynamic atmosphere correction)
 - Uncertainties of steric effect (new satellite mission SMOS)
 - Uncertainties of atmosphere model
 - Uncertainties of oceanic mass movements from ocean model
Thank you for your attention!
Agreement w. geodetic excitations (C04)