Integration of space geodetic observations and geophysical models

Franziska Göttl Deutsches Geodätisches Forschungsinstitut

Geodetic Week 2006, Munich, 12. October 2006

Overview

- Combination of space geodetic observations and geophysical models
- Interactions between the subsystems of the Earth + mass conservation
- Adapting of geophysical models to gravimetric observations
- Outlook

Geometric observations

Site displacements influence the estimation of the "observed" ERP \Rightarrow "observed" ERP reflect the rotation of the observation-network!

Geophy. models / gravimetric observations

NEQ-System of the geophysical models

Mass displacements and motions influence the estimation of the "modelled" ERP \Rightarrow "modelled" ERP reflect the rotation of the Earth!

Combination of all "observations"

Network uncertainties do not appear in the ERP, but could under circumstances identified as "outliers" in the TRF!

Improvement of geophysical models

Principal Component Analysis PCA

Adapting of geophy. models to GRACE-obs.

Comparison of principal components

Pressure field changes of the ocean model ECCO are smaller than of the adapted ocean model!

Comparision of principal components

Pressure field changes of the hydrology model LDAS are much smaller and smoother than of the adapted hydrology model!

Comparision of correlation-coefficients

'1mean value = 0.47514046standard deviation = 0.4105

mean value = 0.2871 standard deviation = 0.4046

Outlook

- Computation of the excitation functions (matter-term)
- Combination of the "modelled" excitation functions of all relevant subsystems
- Comparision with the "observed" excitation function
- Estimation of the accurancy of the "modelled" excitation functions

Thank you for your attention!

GRACE data processing

Pressure field changes

N-S-stripes disappear!

Difference of pressure field changes

Calculation of excitation function

$$\chi_{1}^{matter} = -\frac{a^{2}}{\left(C - A\right)\left(1 - \frac{k_{2}}{k_{f}}\right)} \int_{\lambda \varphi}^{\int \varphi} \rho\xi \cos\varphi \sin\varphi \cos\lambda a^{2} \cos\varphi d\varphi d\lambda$$
$$\chi_{2}^{matter} = -\frac{a^{2}}{\left(C - A\right)\left(1 - \frac{k_{2}}{k_{f}}\right)} \int_{\lambda \varphi}^{\int \varphi} \rho\xi \cos\varphi \sin\varphi \sin\lambda a^{2} \cos\varphi d\varphi d\lambda$$
$$\chi_{3}^{matter} = -\frac{a^{2}}{C_{m}} \iint_{\lambda \varphi} \rho\xi \cos^{2}\varphi a^{2} \cos\varphi d\varphi d\lambda$$

Calculation of excitation function

$$\chi_{1}^{matter} = -\frac{M_{E}a^{2}}{(C-A)\left(1-\frac{k_{2}}{k_{f}}\right)}\Delta C_{21}$$
$$\chi_{2}^{matter} = -\frac{M_{E}a^{2}}{(C-A)\left(1-\frac{k_{2}}{k_{f}}\right)}\Delta S_{21}$$
$$\chi_{3}^{matter} = -\frac{2}{3}\frac{M_{E}a^{2}}{C_{m}}\Delta C_{20}$$

Calculation of excitation function

$$\chi_{1}^{motion} = -\frac{1}{\Omega(C-A)\left(1-\frac{k_{2}}{k_{f}}\right)} \iint_{r \lambda \varphi} \rho r(u \sin \varphi \cos \lambda - v \sin \lambda) r^{2} \cos \varphi \, d\varphi \, d\lambda \, dr$$
$$\chi_{2}^{motion} = -\frac{1}{\Omega(C-A)\left(1-\frac{k_{2}}{k_{f}}\right)} \iint_{r \lambda \varphi} \rho r(u \sin \varphi \sin \lambda - v \cos \lambda) r^{2} \cos \varphi \, d\varphi \, d\lambda \, dr$$
$$\chi_{3}^{motion} = -\frac{1}{\Omega C_{m}} \iint_{r \lambda \varphi} \rho ur^{2} \cos \varphi \, d\varphi \, d\lambda \, dr$$

NEQs

Correlated error filter

- N-S-strips are a result of systematic errors in the coefficients.
- Coefficients up to order and degree 7 do not show syst. errors.
- For higher orders the systematic errors are estimated by fitting polynomials p(x) of degree 7 by least square adjustment.

Observationequation: $p(x)=ax^7+bx^6+cx^5+dx^4+ex^3+fx^2+gx+C$ **Unknowns:** a, b, c, d, e, f, g, C **Observations:** $C_{9,8}$, $C_{11,8}$, $C_{13,8}$, ... $C_{81,8}$ **Filtered coefficients:** $C_{n,8}^{\text{filtered}} = C_{n,8} - p(n)$

- To estimate the fitting polynomials for orders higher than 40 you have to use coefficients with degrees up to 40+order.
- Coefficients higher than order and degree 50 are not filtered by the correlated error filter.

Isotropic Gaussian filter

 $W_n = exp[-(n r_S/a_E)^2/(4 ln2)]$

